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proaches for spectral library
generation used by DIA was an-
alyzed on identification and
quantification level using a gold
standard spike-in data set. We
included approaches using re-
petitive measurements of the
original samples as well as
methods applying peptide and
protein pre-fractionation before
library generation. The compari-
sons show, that prefractionation
generally increases the number
of identified peptides and protein
groups, whereas the ground
truth quantification ratios could
be well approximated using li-
braries generated by repetitive
measurements.
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Reproducibility, Specificity and Accuracy of
Relative Quantification Using Spectral Library-
based Data-independent Acquisition*□S

Katalin Barkovits¶, Sandra Pacharra¶, Kathy Pfeiffer, Simone Steinbach,
Martin Eisenacher, Katrin Marcus§¶, and Julian Uszkoreit‡¶

Currently data-dependent acquisition (DDA) is the
method of choice for mass spectrometry-based pro-
teomics discovery experiments, but data-independent
acquisition (DIA) is steadily becoming more important.
One of the most important requirements to perform a
DIA analysis is the availability of suitable spectral librar-
ies for peptide identification and quantification. Several
studies were performed addressing the evaluation of
spectral library performance for protein identification in
DIA measurements. But so far only few experiments
estimate the effect of these libraries on the quantitative
level.

In this work we created a gold standard spike-in sample
set with known contents and ratios of proteins in a com-
plex protein matrix that allowed a detailed comparison of
DIA quantification data obtained with different spectral
library approaches. We used in-house generated sample-
specific spectral libraries created using varying sample
preparation approaches and repeated DDA measurement.
In addition, two different search engines were tested for
protein identification from DDA data and subsequent li-
brary generation. In total, eight different spectral libraries
were generated, and the quantification results compared
with a library free method, as well as a default DDA anal-
ysis. Not only the number of identifications on peptide and
protein level in the spectral libraries and the correspond-
ing DIA analysis results was inspected, but also the num-
ber of expected and identified differentially abundant pro-
tein groups and their ratios.

We found, that while libraries of prefractionated sam-
ples were generally larger, there was no significant in-
crease in DIA identifications compared with repetitive
non-fractionated measurements. Furthermore, we show
that the accuracy of the quantification is strongly depend-
ent on the applied spectral library and whether the quan-
tification is based on peptide or protein level. Overall, the
reproducibility and accuracy of DIA quantification is su-
perior to DDA in all applied approaches.

Data has been deposited to the ProteomeXchange repos-
itory with identifiers PXD012986, PXD012987, PXD012988 and

PXD014956. Molecular & Cellular Proteomics 19: 181–197,
2020. DOI: 10.1074/mcp.RA119.001714.

Data-independent acquisition (DIA)1 is gaining more and
more interest as a method for reliable and comprehensive
label-free quantification (LFQ) of proteomics data and was
already successfully applied in several clinical and biomarker
discovery studies (1–4). So far, most liquid chromatography
coupled tandem mass spectrometry (LC-MS/MS) approaches
are relying on data-dependent acquisition (DDA) in which
typically the most abundant precursor ions of an MS1 survey
scan are selected for fragmentation and acquisition of respec-
tive MS2 spectra (5–7). Thus, only selected precursors can be
identified leading to a loss of information, especially for low
abundant precursors (8). In addition, the stochastic nature of
data-dependent precursor selection results in only partially
reproducible LC-MS/MS data (9, 10). At the time of writing this
manuscript, quantification of DDA data is usually achieved on
the basis of MS1 chromatographic peak area, which is prone
to interferences, especially in complex samples (11, 12). To
reliably determine relative protein abundances in a label-free
experiment, targeted approaches such as selected reaction
monitoring (SRM, (13)) or parallel reaction monitoring (PRM,
(14)) are being used. In SRM a predefined set of up to 100
precursors is chosen for fragmentation before acquisition,
resulting in highly accurate quantification even at low abun-
dance at the cost of the depth of the analyzed proteome (5,
13). Although DDA is commonly used for discovery proteom-
ics, SRM/PRM can be applied for e.g. the verification of a
predetermined set of proteins.

In contrast to DDA and SRM/PRM, in which only a subset of
all precursor ions present in a complex sample is fragmented
and analyzed in MS2, DIA methods allow the fragmentation of
all possibly generated precursor ions by cycling through pre-
defined m/z windows along the whole survey scan range (15,
16). Although this allows acquisition of nearly complete MS2
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data, the direct correlation between precursor and its frag-
ment ions is lost resulting in the need for more complex data
analysis algorithms. Typically, spectral libraries, which are gen-
erated from previous DDA measurements, are used to infer the
precursor peptide - fragment connection and thus allow peptide
and protein identification (17, 18). In addition, spectral library-
free approaches are being developed (e.g. DIA-Umpire and
DirectDIA), but currently these cannot identify as many precur-
sors as the spectral library-based approaches (19, 20). DIA
allows quantification on MS2 level through extraction of frag-
ment ion chromatograms, which are less prone to interference
than MS1 peak areas. This makes the quantification more ac-
curate and reliable than in DDA (15, 21, 22).

Although DIA was first described in 2004 (23) proteomics
scientists show increasing interest in it for the past few years
mainly because of vast improvements in instrumentation and
software. Several studies revealed the advantages of DIA
against DDA methods. Most of them demonstrated an im-
proved peptide and protein identification rate using spectral
library-based DIA (e.g. (24, 25)) even in single shot analyses
(16). In addition, a few studies showed an improved quantifi-
cation reproducibility based on the coefficient of variation (CV)
between technical replicates (1, 26). But more detailed anal-
yses especially of quantification performance regarding spec-
ificity and accuracy of differential abundance detection are
rarely performed because they rely on the use of suitably
tailor-made samples.

Because DIA performance relies on the use of suitable
spectral libraries different methods for the library generation
were proposed and evaluated: Although Rosenberger et al.
developed a generic large-scale human spectral library data-
base (27), it was shown later on that the use of large external
library repositories is inferior in terms of number of identifica-
tions (28). The in-house generation of project and sample-
specific libraries benefits from the use of the same LC-MS
setup as used in DIA measurements (1, 28). It is common to
combine repeated DDA measurements of the same sample to
maximize peptide coverage, but libraries can also be ex-
tended by sample pre-fractionation. For instance, Govaert et
al. evaluated fractionation on protein, peptide and acquisition
level and showed that all methods increased the library size,
whereby protein fractionation using SDS-PAGE proved to be

the most effective method (29). The quality of a spectral library
often is assessed on the basis of library size (number of
included precursors, peptides and proteins) and the number
of yielded extractions from DIA data instead of the accuracy
of the contained spectra. Just recently, methods to create
libraries in-silico were developed (30–32). These take a suit-
able protein sequence database as input and computationally
predict peptide fragments, which can be compiled into spec-
tral libraries.

In this study, we exhaustively evaluated the quality of dif-
ferent spectral libraries regarding their identification and es-
pecially their quantification potential in DIA data analysis.
Therefor we created a gold standard spike-in sample set
consisting of C2C12 (immortalized mouse myoblast) cell ly-
sate as constant background spiked with 13 proteins in five
different concentrations. These standardized samples, al-
though mimicking complex clinical samples with the proteins
of interest present over a broad concentration range, allowed
a detailed analysis of quantification reproducibility as well as
specificity of and accuracy in differential abundance detec-
tion. The five samples were measured by DDA and DIA in
triplicate, whereby the following approaches for spectral li-
brary usage were realized for DIA data analysis: On the one
hand we used repeated DDA runs of in-solution digests and
on the other hand prefractionation of samples on protein and
peptide level to generate a range of different spectral libraries
in Spectronaut 11 (SN, Biognosys AG, Schlieren, Switzerland)
using the identification results of Proteome Discoverer 2.2
(PD, Thermo Fisher Scientific, Dreieich, Germany). In addition,
we used Spectronaut Pulsar’s protein identification algorithm
for spectral library generation of two representative DDA data
sets. These spectral library-using approaches were compared
with the spectral library-free DirectDIA analysis by SN Pulsar,
which has not been thoroughly described in literature so far,
and an analysis of DDA data using OpenMS (33, 34). The
generated data were thoroughly evaluated regarding peptide
and protein identification and especially regarding quantifica-
tion performance. In addition to CVs, we determined the
significance of the induced spike-in abundancy changes and
their correlation with the theoretical values. Furthermore, we
analyzed the effectiveness to identify proteins that were dif-
ferentially abundant (true positives) and the analysis specific-
ity in terms of false positive rate. The focus of the presented
analyses was the evaluation of the impact of differently gen-
erated spectral libraries on one DIA data set, not to bench-
mark different MS technologies or tools on the same sample
respectively data set, as was for example done in (35). In the
latter Navarro et al. benchmarked the quantitative perform-
ance of different mass spectrometers and analysis tools but
used the same libraries for DIA extraction. The main part of
this work was performed using data generated by Spectro-
naut. Nevertheless, we additionally analyzed the data set with
OpenSWATH (36) and will highlight some of the results (for
detailed results, see supplemental document).

1 The abbreviations used are: DIA, data-independent acquisition;
AAA, amino acid analysis; ACN, acetonitrile; AGC, automated gain
control; AmBic, ammonium bicarbonate; ANOVA, analysis of vari-
ance; AUC, area under the curve; CV, coefficient of variation; DDA,
data-dependent acquisition; DTT, dithiothreitol; FA, formic acid; FC,
fold change; FP, false positive; F, fractionation; GS, gold standard;
HCD, higher-energy collision dissociation; in-sol, in-solution; IS, in-
solution; LC-MS/MS, liquid chromatography coupled tandem mass
spectrometry; LFQ, label-free quantification; MAPE, mean absolute
percentage error; MM, master mix; NCE, normalized collision energy;
PD, proteome discoverer; Pep, peptide; Prot, protein; ROC, receiver
operator characteristic; SN, spectronaut; SRM, selected reaction
monitoring; TFA, trifluoroacetic acid; TP, true positive.
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EXPERIMENTAL PROCEDURES

Sample Preparation

Frozen C2C12 cells were warmed up within a water bath (37 °C)
and taken into culture in a 58 cm2 Petri dish (Sarstedt, Nümbrecht,
Germany) within 10 ml DMEM (Gibco®, Thermo Fisher) standard
medium containing 15% (v/v) FCS (Gibco®), 2% (v/v) sodium pyru-
vate (Biochrom, Berlin, Germany), 1% (v/v) non-essential amino acids
(Biochrom) and 1% (v/v) penicillin/streptomycin (Pan Biotech, Aiden-
bach, Germany). The cells were cultivated in an incubator (37 °C, 5%
CO2), the medium was changed every 2 days and the cells were split
at a confluency of approx. 70%. For this, the cells were washed with
5 ml PBS (Gibco®), then detached with 1.5 ml 0.05% Trypsin/1 M
EDTA (Gibco®) for 3 min inside the incubator and further the activity
of trypsin was stopped by the addition of standard medium.

Before lysis, cells were pelleted by centrifugation at 16,000 � g for
10 min and then lysed in 30 mM TrisHCl, pH 8.5, 7 M urea and 2 M

thiourea using glass beads and sonication (4 � 1 min on ice). After
lysate transfer into a fresh tube, glass beads were washed with
distilled water, the resulting solution was combined with the lysate
(resulting in 5.3 M urea and 1.5 M thiourea concentrations) and cleared
by centrifugation at 16,000 � g for 10 min.

As spike-in proteins we chose 13 non-mouse proteins with varying
physico-chemical properties (see supplemental Table S1 for detailed
information and UniProt accessions): human �-synuclein, �-lacto-
globulin from bovine milk, fibrinogen �, � and � from human plasma
(Merck Millipore, Darmstadt, Germany), glucose oxidase from Asper-
gillus niger, human hemoglobin � and �, lipases 1, 2 and 3 from
Candida rugosa, lysozyme from chicken egg white and myoglobin
from equine skeletal muscle (Sigma-Aldrich, part of Merck KGaA,
Darmstadt, Germany, unless otherwise stated). The fibrinogen �, �
and � were contained in the same solution, as were the hemoglobin
� and � and the lipases 1, 2 and 3 respectively. Therefore, the relative
amounts of these proteins are equal in all spike-in levels. The spike-
ins were combined in a manner to yield in a comparable overall
sample amount and physiologically plausible protein concentrations.

The gold standard spike-in sample set (GS) consisting of five
samples was prepared as follows: a constant amount of C2C12 lysate
as background matrix was spiked with varying amounts of the 13
spike-in proteins in 50 mM ammonium bicarbonate (AmBic) as spec-
ified in Table I.

For spectral library generation (in-solution digest, protein fraction-
ation and peptide fractionation) C2C12 lysate was mixed with equal
amounts of the spike-in proteins (called master mix, MM, in the
following) as specified in supplemental Table S2.

In-solution Tryptic Digestion—GS samples, MM for the in-solution
and peptide fractionation library (sample composition as specified in
Table I and supplemental Table S2) were prepared as follows.

After reduction with dithiothreitol (DTT, final concentration of 5 mM)
for 20 min at 56 °C proteins were alkylated with iodoacetamide (13.75
mM final concentration) at ambient temperature for 30 min in the dark.
Samples were diluted with 50 mM AmBic to an urea concentration
�1.5 M and digestion was carried out using trypsin (Serva, Heidel-
berg, Germany) at an enzyme to substrate ratio of approx. 1:27 at
37 °C overnight. The digestion was stopped by adding trifluoroacetic
acid (TFA) to a final concentration of 0.5%. After centrifugation the
supernatant was collected, and the peptide concentration was deter-
mined by in-house amino acid analysis (AAA) (37). Before LC-MS/MS
analysis was performed, the iRT kit provided by Biognosys, which is
required for DIA analysis using Biognosys’ SN, was added according
to the manufacturer’s instructions. In brief, solubilized iRT peptides
were diluted 1:10 in 0.1% TFA and 1 �l was added to each sample.

Protein Fractionation by SDS-PAGE and In-gel Tryptic Digestion—
For protein fractionation by SDS-PAGE the MM sample (composition
as specified in supplemental Table S2) was reduced and alkylated as
described in In-solution Tryptic Digestion. Per lane, 40 �g were
loaded onto an Invitrogen™ Bolt™ 4–12% Bis-Tris Plus Gel (Thermo
Fisher Scientific) and proteins were separated at 200 V in MOPS
buffer. After staining with SimplyBlue SafeStain (Thermo Fisher Sci-
entific) each lane was cut into 10 slices, which were destained before
subjection to overnight trypsin digestion using 0,12 �g trypsin per gel
slice. Peptides were eluted twice using 0.1% TFA: acetonitrile (ACN)
1:1. The supernatants of each fraction were combined, vacuum dried
and resuspended in 0.1% TFA 10 different fractions. Before LC-
MS/MS analysis, 0.5 �l of solubilized iRT peptides were added to
each sample.

Peptide Fractionation by High pH Reversed Phase Chromatogra-
phy—Peptide fractionation was done using the “Pierce High pH
Reversed-Phase Peptide Fractionation Kit” (Thermo Fisher Scien-
tific) according to the manufacturer’s manual. In brief, the peptide
sample prepared as described in In-solution Tryptic Digestion was
vacuum-dried, resuspended in 300 �l 0.1% TFA and loaded onto
the equilibrated column. Peptides were eluted stepwise with in-
creasing ACN concentration in 0.1% triethylamine into 8 fractions,
that were vacuum-dried and resuspended in 0.1% TFA. Finally,
peptide concentrations were determined by in-house AAA. Before
LC-MS/MS analysis, 0.5 �l of solubilized iRT peptides were added
to each sample.

TABLE I
Composition of the gold standard spike-in sample set consisting of a constant C2C12 cell lysate background and varying amounts of 13

non-mouse spike-in proteins. Shown are the pmol amounts of the spike-in proteins for each of the five sample states

UniProt accession
Amount of spike-in proteins (pmol)

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

�-synuclein (pmol) P37840 1 10 0.5 0.1 5
�-lactoglobulin (pmol) P02754 0.5 0.1 5 10 1
Fibrinogen (pmol) P02671, P02675, P02679 10 5 1 0.5 0.1
�, �, � each
Glucose oxidase (pmol) P13006 0.1 1 10 5 0.5
Hemoglobin (pmol) P69905, P68871 0.5 5 10 1 0.1
�, � each
Lipase (pmol) P20261, P32946, P32947 0.1 0.5 1 5 10
1, 2, 3 each
Lysozyme (pmol) P00698 5 10 0.1 0.5 1
Myoglobin (pmol) P68082 1 0.1 5 10 0.5
C2C12 lysate (�g) 20 20 20 20 20
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Mass Spectrometric Acquisition

All samples (library samples, DDA and DIA analysis samples) were
analyzed using the following LC-MS/MS setup: For LC separation the
nanoHPLC system Ultimate 3000 (Thermo Fisher Scientific) was used
with a PepMap 100 C18 (100 �m ID � 2 cm, particle size 5 �m, pore
size 100 Å; Thermo Fisher Scientific) as precolumn and a PepMap
C18 (75 �m � 50 cm, particle size 2 �m, pore size 100 Å; Thermo
Fisher Scientific) as analytical column. Peptides were separated by a
120 min gradient using 0.1% formic acid (FA) as buffer A and 84%
ACN in 0.1% FA as buffer B. The gradient was run from 5% to 40%
buffer B. Subsequently, peptides were ionized by electrospray ioni-
zation and transferred into a Q Exactive HF mass spectrometer
(Thermo Fisher Scientific). The capillary temperature was set to
250 °C and the spray voltage to 1600 V. The lock mass polydimeth-
ylcyclosiloxane (445.120 m/z) was used for internal recalibration.

For DDA MS runs (library generation and DDA analyses), the mass
range of MS1 full scans was set to 350–1400 m/z with a resolution of
60,000 at 200 m/z (AGC 3 � 106, 80 ms maximum injection time).
HCD fragmentation of the Top10 abundant precursor ions was per-
formed at 27% NCE. The fragment analysis (MS2) was performed
with a resolution of 30,000 at 200 m/z (AGC 1 � 106, 120 ms
maximum injection time, 2.2 m/z isolation window).

For DIA MS runs, the MS1 full scans were performed at a mass
range of 350–1400 m/z with a resolution of 120,000 at 200 m/z (AGC
3 � 106, 20 ms maximum injection time). Fragment analysis (MS2)
was subdivided into 22 DIA isolation windows of equal width (49 m/z
wide) using a resolution of 30,000 at 200 m/z (AGC 3 � 106, auto
maximum injection time). Stepped collision energy was used (25.5%,
27 and 30% NCE).

Sample analyses, containing the spike-in proteins, in DDA and DIA
mode were performed with 200 ng sample peptide amount (corre-
sponding to �1 to 100 fmol spike-ins), whereas for library generation
up to 800 ng of peptides per sample were injected.

The raw spectrometric data and the spectral libraries have been
deposited to the ProteomeXchange Consortium (http://proteomecen-
tral.proteomexchange.org) via the PRIDE partner repository (38) with
the data set identifiers PXD012986, PXD012987, and PXD012988.

Spectral Library Generation—DDA data were searched with PD
using Mascot 2.5 (Matrix Science Ltd, London, UK, (39)) as peptide
search engine and Percolator (40) for the refinement of target-decoy
estimation.

For all searches, DIA and DDA, the following common settings
were used- as fixed modification, only aarbamidomethylation at C
was set, whereas as variable modifications oxidation (M), Gln-�pyro-
Glu (N-terminal Q), deamidated (NQ), ammonium (DE) and ammonia-
loss (N, N-terminal C) were allowed because of sample preparation

• A maximum of two missed cleavages was allowed.
• The precursor tolerance was set to 5 ppm and the fragment

tolerance to 20 mmu.
• The cleavage enzyme Trypsin (cleavage at each K and R, unless

followed by P) was used.

For DDA identifications, a database consisting of the Uni-
Prot reference mouse proteome (release 2017_12, 52548 pro-
tein entries), the cRAP contaminants (unchanged since Jan-
uary 2015, 115 entries), the iRT protein for DIA retention time
calibration and a database of the spike-in proteins was used.
Additionally, to the 13 spiked-in proteins several proteins that
were identified together with them in prior experiments (data
not shown) were added to the database, containing altogether
160 protein accessions in the spike-in database (compare
Statistical Analysis). Thus, the complete protein database
used in this study contained 52,824 entries. The searches to
create the spectral library were refined using Percolator, al-
lowing only high confidence peptides in PD. Spectral libraries
were generated using the spectral library generation function
of SN using mostly the default settings. In brief, PD confi-
dence level “high” was used for identification with SN protein
inference enabled. Fragment ions between 300–1800 m/z,
with minimum 3 amino acid length and minimum relative
intensity of 5 were considered. Precursors with less than 3
fragment ions were removed. For the generation of SN Pulsar
spectral libraries, DDA raw data were directly loaded into SN
Pulsar and spectral library generation was done using the
same settings as described for SN 11. An overview on all
spectral libraries used in this work regarding library creation
can be found in Fig. 2 and Table II (supplemental Table S3
shows some additional information like preparation time), and
regarding library content (their constituting precursors, pep-
tides and protein groups) in supplemental Table S5. In total,
eight different libraries are described here; whereby the most
complex spectral library “IS and F all 78” was created from
DDA data of the other 5 non-Pulsar libraries and 6 additional
measurements of the “MM IS 6” sample.

DDA Data Analysis Using OpenMS—DDA data were analyzed with
a KNIME (41) workflow using OpenMS and PIA (42, 43) nodes (work-

TABLE II
Overview of analyzed DIA libraries. The names of each library consists of the spike-in types (MM: master mix, i.e. mixture of background and
spike-ins in fixed amount, GS: gold standard, i.e. the same samples as measured by DIA), the digest type (IS: in-solution, F: fragmented and
therefore in-gel), whether fractionation was performed and on which level (Prot: protein fraction, Pep: peptide fractionation), finally, the number
represents the number of MS runs for the library. The libraries generated by Pulsar instead of ProteomeDiscoverer are indicated by the

respective prefix

Name Spike-in type Digest type Fractionation No of runs Software

MM IS 6 Constant In-solution No 6 PD�SN11
GS IS 15 Varying In-solution No 15 PD�SN11
GS IS 30 Varying In-solution No 30 PD�SN11
MM F Prot 20 Constant In-gel Protein 20 PD�SN11
MM F Pep 16 Constant In-solution Peptide 16 PD�SN11
IS and F all 78 Combined Combined Combined 78 PD�SN11
Pulsar GS IS 15 Varying In-solution No 15 SN Pulsar
Pulsar MM F Prot 20 Constant In-gel Protein 20 SN Pulsar
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flows are deposited inside PRIDE with the data). In brief, MS/MS
spectra were first converted into centroided mzML using the vendor
algorithm of msConvert (ProteoWizard version 3.0.10112 (44)). After-
ward, they were identified using the target-decoy approach with
Mascot 2.5, MS-GF� (45) and X!Tandem (46) and searches were
combined using PIA, maintaining a peptide spectrum match and
protein level false discovery rate of 1%. Peptide-features were de-
tected and quantified using the FeatureFinderMultiplex. This algo-
rithm uses the areas under the curves of the peptide isotope ion trails
in the MS1 scans for the respective quantifications. The identifica-
tions were mapped to the features, aligned and normalized using the
respective OpenMS nodes. Before the protein quantification using
Top3 peptide abundancies, protein inference was conducted using
PIA. The quantities for purely sequence based peptides was inferred
from the quantities of peptides distinguishing different modifications
and charge states by summing up the respective raw quantities,
which is the default approach in OpenMS. The resulting peptide and
protein quantifications were statistically analyzed as described below
(see Statistical Analysis).

DIA Data Analysis Using Spectronaut 11 and Pulsar—DIA data were
analyzed with SN 11 using the following settings. Calibration was set
to non-linear iRT calibration with precision iRT enabled. Identification
was performed using 1% q-value cutoff on precursor and protein
level whereas the maximum number of decoys was set to a fraction of
0.5 of library size. The mass tolerance for matching precursor and
fragment ions was set to dynamic (default), which lets SN determine
the optimal value. For quantification interference correction was en-
abled with at least three fragment ions used per peptide, major and
minor group quantities were set to mean peptide and mean precursor
quantity, respectively with Top3 group selection each. Quantity was
determined on MS2 level using area of XIC peaks with enabled cross
run normalization. A complete description of all parameters can be
found in supplemental Table S4.

In addition, DirectDIA was performed on the DIA data set with SN
Pulsar using the same settings as described above.

Statistical Analysis—The quantitative data were exported from SN
using an export schema, which allowed a statistical analysis for
peptide and protein group relative abundancies. In the following we
used all quantities, which had a valid value for at least one run, which
is analogous to using the “sparse” setting in SN, unless stated oth-
erwise. All data from the DIA and DDA measurements were analyzed
by the same workflow using KNIME and R. The respective workflow
can be found in the ProteomeXchange upload. On both levels, pep-
tide and protein, the following analyses were conducted: first, missing
values were imputed to a value of 0. The data were transformed using
the inverse hyperbolic sine function (arcsinh), which has similar char-
acteristics as the logarithm in the given numeric range but is defined
for 0. Afterward, an analysis of variance (ANOVA) model was fitted to
the transformed data. As a post-hoc test Tukey’s honest significance
test was conducted, to determine, which spike-in states were signif-
icantly differential. Finally, the ANOVA p values were corrected for
multiple testing using the Benjamini-Hochberg procedure. To calcu-
late the fold changes and log2 ratios between the spike-in states, the
average quantities between the replicates for each state were calcu-
lated, leaving out the missing values instead of trying to impute them.

To account for impurities introduced by the spike-in protein solu-
tions additionally to the 13 spike-in proteins 147 protein sequences
were added to the protein database used for identifications. These
proteins were identified by prior MS analyses of the spike-in protein
solutions (data not shown), which were not highly purified. These
“spike-in contaminants” are not expected to be found in all spike-in
samples because of their low amount, but are nevertheless added to
the protein database to allow an identification of the respective spec-

tra. Thus, they are neither considered true positives (TP) nor false
positives (FP) in the remaining analyses.

Besides these spike-in contaminants, there might be more pep-
tides in the spike-in solutions, which could be detected and mapped
to mouse proteins. To account for these FP, the abundancies of
proteins, which are detected to be differential, were correlated to the
known spike-in abundancies, using Pearson’s correlation coefficient.
The data were filtered if the correlation was higher than 0.9. Addition-
ally, a fold change (FC) filter was applied, filtering out all candidates
with relatively small FCs (FC � 1.3).

In all analyses, unless stated otherwise, the TP are the spike-in
proteins, which were correctly identified to be differentially abundant.
FP are detected as differential but are none of the spike-in proteins.
To calculate the FP rate of the differential proteins, the number of
differential FPs was divided by all differential proteins, i.e. the number
of TP, the spike-in contaminants (which are regarded as TP in this
calculation, as they obviously are regulated) and the FP.

The accuracy of differential abundance detection was assessed
based on the mean absolute percentage error (MAPE), which is a
percental measure for the deviation of all spike-in ratios from the
theoretical ones. The formula for the calculation is:

MAPE �
1
n�

t�1

n

�At � Ft

At
�

where n is the number of possible abundance ratios (ten ratios for the
five different states), At is the theoretical log2 value of the abundance
ratio and Ft the median of the measured log2 ratios for the respective
states. This allows to compare the accuracy of the quantifications
using one objective value.

To compare the SN results with results generated by another tool,
we performed an analysis using OpenSWATH. The analysis followed
the basic tutorial settings of OpenSWATH using Mascot search re-
sults, iProphet (47) for the combination of results, Mayu (48) for the
FDR estimation and spectraST (49) for the actual library generation.
The DIA data was analyzed by OpenSWATH and PyProphet (50) and
the quantified features were aligned using TRIC (51). For more infor-
mation on the commands and parameters, see the supplementary
file. The same KNIME workflow as for the SN and OpenMS data was
used for the final analyses.

Experimental Design and Statistical Rationale

As described in the prior paragraphs a total of 78 LC-MS/MS runs
were analyzed for the spectral library generation (compare supple-
mental Table S3, the number in the library names reflects the number
of MS runs used for the creation of the library, the “MM IS 6” were
additionally replicated with 800 ng and analyzed with the “IS and F all
78” library). For the DDA and DIA analysis, the described five spike-in
states were measured in triplicates to reflect a common replicate
number, resulting in 15 LC-MS/MS runs per method. For the retention
time alignment of the DIA analyses, the iRT kit provided by Biognosis
was applied, as described in Sample Preparation. MS1 and MS2
spectra were acquired for the DDA and DIA analyses as described in
Mass Spectrometric Acquisition.

RESULTS

To thoroughly analyze the performance of different label-
free quantification approaches, we generated a gold standard
spike-in sample set (GS) consisting of C2C12 cell lysate as
constant background and 13 non-mouse proteins each in five
different concentrations (study design see Fig. 1). By using
spike-in proteins with varying physico-chemical properties,
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we were able to mimic a complex biological sample con-
taining the proteins of interest—the proteins to be relatively
quantified—over a broad concentration range. The individ-
ual spike-ins were combined in a way to keep the overall
protein concentration constant between the five samples to
facilitate good comparability—a prerequisite for successful
normalization for relative quantification. We used this sam-
ple set to compare identification and quantification perform-
ance, on the one hand between DDA, DirectDIA, and spectral
library-based DIA and on the other hand we evaluated the
influence of different spectral libraries. Because the actual
differentially abundant proteins (true positives, TPs)—the
spiked-in non-mouse proteins—can clearly be distinguished
from false positive (FP) background proteins, the quantifi-
cation specificity can be evaluated in detail. Regarding rel-
ative quantification, the GS enabled us to compare the
protein differential abundance ratios obtained by the various
analyses with the theoretic values to estimate quantification
accuracy.

Generation of the Gold Standard Spike-in Sample Set

For the creation of a sample set suited for the verification
of quantification reproducibility, specificity and accuracy,
we used whole mouse cell lysate as constant background,
representing a complex biological sample, complemented
with 13 purified non-mouse proteins in varying concentra-
tions. In summary, six human, three animal and four fungal
proteins with varying characteristics in terms of length, hy-
drophobicity and isoelectric point (pI) as well as with mini-
mal tryptic peptide overlap with the C2C12 cell lysate were
selected. Proteins consisting of more than one subunit (he-
moglobin and fibrinogen) and the fungal lipases were pres-
ent in sample mixtures, whereas all other proteins were
present in separate solutions (see Table I and supplemental

Table S1 for sample composition and spike-in protein de-
tails, respectively). Before preparation of the GS, each pro-
tein sample was characterized individually by LC-MS/MS
verifying the presence of the 13 spike-in proteins. Beside
these, 147 additional proteins were identified (in the follow-
ing termed “spike-in contaminants,” see supplemental
FASTA file containing the spike-in protein sequences and
the spike-in contaminants). The thirteen proteins result the-
oretically in 948 possible tryptic peptides (considering
amino acid sequence lengths ranging from 6 to 50 and
allowing up to two missed cleavages) ensuring enough sta-
tistical power for data analysis.

Altogether, the GS consisted of five different samples that
contained the same amount of C2C12 lysate but varying
concentrations of each spike-in protein. The individual
spike-in amounts were shuffled to keep the overall protein
concentration constant (see Table I). We used five physiolog-
ically plausible spike-in amounts of 1.25 to 125 nM per
spike-in protein (as deduced from plasma protein concentra-
tion ranges (52)) in a 0.27 �g/�l overall protein concentration,
generating a broad range of protein ratios between 2 and 100.
For LC-MS/MS analysis of the GS, each sample was meas-
ured in triplicate in DDA and DIA mode using the same instru-
mental setup (nano-LC coupled to Q-Exactive HF).

Spectral Libraries

For DIA data analysis of the GS, eight different spectral
libraries were generated using (1) two different sample types,
(2) varying sample preparation methods, and (3) two different
search engines (see Fig. 2 for an overview). In addition to the
samples of the GS, we used a protein master mix (MM)
containing the spike-in proteins in equal amounts within the
C2C12 matrix (1), thus ensuring all proteins of interest to be
present for successful identification. Although the GS was

FIG. 1. Study design for setup and
analysis of the gold standard spike-in
sample set (GS). The GS was created
by spiking 13 proteins into C2C12 cell
lysate with 5 defined concentration lev-
els. After in-solution trypsin digestion,
each sample was subjected to triplicate
LC-MS in DIA and DDA mode. Although
GS DIA data were either analyzed in a
spectral library-based or a spectral li-
brary-free (DirectDIA) approach using
Spectronaut, GS DDA data were ana-
lyzed using OpenMS for identification
and quantification.
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used for in-solution (IS) digest followed by mass spectromet-
ric acquisition only, the MM sample was also subjected to
fractionation (F) on protein (Prot) or on peptide (Pep) level to
create more complex libraries (2). For spectral library gener-
ation the individual IS and F samples were analyzed by LC-
MS/MS in DDA mode. As the most comprehensive library, a
combined library containing all DDA runs was generated (1�2).
All the above described libraries were created using Proteome
Discoverer (PD) identification with Mascot as search engine and
Spectronaut (SN) for spectral library creation. To examine the
influence of the search engine, two representative libraries were
also generated using SN Pulsar (3).

The simplest spectral library generated with six DDA runs of
IS digested MM sample (“MM IS 6”) contained the least
number of peptides and protein groups (23,020 peptides and
4046 protein groups, see Fig. 3, for the complete numbers see
supplemental Table S5). This MM sample mimics a sample
pool, which can be generated if the amount of each individual
sample is too low for multiple MS analyses. We additionally
created the “MM IS 6” library with 4-fold increased peptide
concentration, but this resulted only in a marginal increase in
library size (data not shown). In contrast, increasing the num-
ber of MS runs from 15 in the “GS IS 15” library (24,457
peptides and 4,126 protein groups) to 30 (“GS IS 30”) resulted
in a 25 and 13% larger library on peptide and protein level,
respectively. Sample fractionation is often performed as a
strategy to increase the spectral library depth (29). We per-
formed fractionation on protein and peptide level (“MM F Prot
20” and “MM F Pep 16”), which further increased the spectral
library size. Here protein fractionation yielded in higher num-
ber of peptides than fractionation on peptide level (41,322
peptides and 5859 protein groups in “MM F Prot 20” and

30,838 peptides and 5919 protein groups in “MM F Pep 16”).
We observed an improvement of library size of up to 39% on
peptide level by measuring each fraction twice instead of just
once (data for single measurements not shown). As expected,
combining all sample runs into one spectral library (“IS and F
all 78”) resulted in the largest library with 7718 protein groups
and 71,008 peptides. We also observed an impact of the used
spectrum search engine on library size. SN Pulsar, although
using the same raw data, was able to extract considerably
more peptides and proteins than the respective combined PD
and SN approach (see Fig. 3 and supplemental Table S5 for
actual numbers).

Peptide and Protein Identification

To evaluate the performance of DIA for the analysis of the
GS data set, we used different DIA approaches including
spectral library-free “DirectDIA” and spectral library-based
analyses using the different spectral libraries described
above. These were compared with a standard DDA approach
using OpenMS examining ten analyses in total. Initially, we
assessed the number of identified peptides and protein
groups. Overall, spectral library-based analyses resulted in
higher numbers of identified protein groups compared with
the DDA- and DirectDIA-based analyses. The latter led to the
lowest number of identified protein groups with 2979 over all
15 analyzed samples (see Fig. 3B, for the actual numbers see
supplemental Table S6). Among the spectral library-based
analyses a library size dependent increase in the number of
identified proteins and peptides was observed for the DIA
analysis using libraries generated with the combined PD and
SN approach from IS samples. In brief, the simplest IS library

FIG. 2. Overview on the eight used
spectral libraries. For spectral library
generation we used the in-solution (IS)
digested GS samples or a master mix
(MM) sample. Either an MM IS digest
was directly subjected to LC-MS meas-
urement in DDA mode or it was fraction-
ated (F) on protein (Prot) or peptide
(Pep) level. Spectral libraries were cre-
ated from DDA data of the five different
sample and processing types using a
combined PD�SN approach. All DDA
measurements were combined into a
comprehensive “IS and F all 78” library.
In addition, two libraries were also cre-
ated using SN Pulsar. (Abbreviations:
MM master mix, IS in-solution, F frac-
tionation, Pep peptide, Prot protein, GS
gold standard).
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“MM IS 6” library extracted 3757 proteins and 22,397 pep-
tides, whereas the “GS IS 15” library extracted 3938 proteins
and 23,911 peptides. Including additional DDA runs within
spectral library generation, as realized in the “GS IS 30”
library, resulted in 4522 proteins and 30,086 peptides. As
the results using the “MM IS 6” and the “GS IS 15” libraries
are comparable, using a sample pool for library generation
seems to be a suitable approach for DIA data analysis if e.g.
only small amounts of sample are available. Surprisingly,
although the fractionation libraries (“MM F Prot20” and “MM
F Pep 16”) were larger than the IS libraries (“MM IS 6,” “GS
IS 15,” and “GS IS 30”), lower peptide and protein group
identifications were observed (compare numbers in supple-
mental Table S5 and S6). The highest number of peptides
and protein groups was identified with the most complex
library “IS and F all 78” (47,646 peptides and 5044 protein
groups). In terms of identifications the use of Pulsar instead
of PD�SN for spectral library generation proved to be ben-

eficial, e.g. 63% more peptides and 15% more protein
groups were extracted with the library “Pulsar MM F Prot
20” than with “MM F Prot 20.” This must be cautioned
though: even as it is possible to set the FDR filters in Pulsar,
the analysis is rather a black box. The actual decoys and
FDR calculations cannot be inspected, at least when using
the Spectronaut implementation of Pulsar.

Library Recovery—Investigating the library recovery in more
detail - which is defined as the number of peptides or protein
groups actually identified from the GS data set compared with
the respective library content - we observed a very high library
recovery when using the IS libraries (over 95% peptide and
89% protein recovery, see supplemental Fig. S1A �S1B). In
contrast, significantly fewer peptides and proteins present in
the fractionation libraries were identified in the GS data set
(about 58–70%). This indicates that the IS libraries might not
cover all measurable peptides from the GS sample. The frac-
tionation libraries, especially “IS and F all 78” and “Pulsar MM

FIG. 3. A, Size of the generated
spectral libraries. Shown are the num-
ber of peptides and protein groups in-
cluded in each spectral library. The
smallest spectral library based on DDA
measurements is the “MM IS 6” library.
The highest number of peptides are in-
cluded in the “Pulsar MM F Prot 20”
library whereas the largest library in
terms of protein groups is the “IS and F
all 78.” B, Identifications obtained from
triplicate measurements of the five
spike-in samples. Given are the accu-
mulated numbers of identified peptides
and protein groups from the spiked
C2C12 cell lysate samples for the DDA
analysis using OpenMS and the DIA
analyses performed in SN. Although
DDA extracted the lowest number of
peptides and DirectDIA the lowest num-
ber of protein groups, the highest num-
ber of identifications was achieved with
the “IS and F all 78” spectral library
based DIA analysis.
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F Prot 20,” on the other hand included many unrecoverable
peptide spectra.

Completeness—For DDA it is known that when measuring
comprehensive sample sets, e.g. from a clinical study, many
peptides are not recorded for all samples (so called missing
values (9)). Therefore, we evaluated the portion of consistently
identified peptides and proteins, termed “completeness,”
within each analysis and compared those among all ap-
proaches (see supplemental Fig. S1C). With DDA only 52% of
the peptides and 65% of the protein groups were identified in
all samples, whereas the DirectDIA approach provided 91%
peptide and almost 99% protein completeness. In spectral
library-based DIA analyses 82% to 91% of identified proteins
were present in all 15 samples regardless which spectral
library was used. However, on peptide level the completeness
was considerably affected by the library choice. Among the
PD�SN libraries the IS libraries yielded 80% to 83% com-
pleteness whereas in case of the fractionation libraries about
63% completeness was achieved. Although the peptide com-
pleteness in percent was quite low when using the most
complex “IS and F all 78” library (56%), the actual number of
consistently identified peptides was higher than with any
other analysis. A similar effect was observed with the Pulsar
spectral libraries. When comparing the Pulsar with the re-
spective PD�SN libraries the peptide completeness dropped
by about 10% whereas the Pulsar generated libraries yielded
about 6700 more consistently identified peptides. As ex-
pected, peptides found in only one sample out of the 15 were
mostly low abundant ones (data not shown).

In many analysis strategies, proteins or peptides must be
present in at least a certain percentage of the analyzed runs to
not be rejected because of too many missing values. There-
fore, in supplemental Table S8 we show the percentage of
protein groups and peptides, which were found in all and at
least 80%, 66%, and 50% of the runs. The data shows, that
the percentages on the peptide level increase with decreasing
required completeness but maintains the same trend. On
protein level though, requiring an identification in only 80% of
the runs already results in a completeness above 90% in all
analyses, except for the DDA.

Besides the examination of peptide and protein complete-
ness within each individual analysis, we further inspected the
overlap of identified peptides and proteins between the ten
different analyses (see Fig. 4). In total 6787 peptides and 2258
proteins were identified by all methods, whereas 3976 pep-
tides and 205 proteins were identified in one analysis only -
in the following termed unique identifications (see sup-
plemental Table S6). The highest number of unique peptide
identifications were achieved using the “IS and F all 78” (3,431
peptides) and the two Pulsar libraries (“Pulsar MM F Prot 20”
3976 and “Pulsar GS IS 15” 2652 peptides). These spectral
libraries also identified the most unique proteins together with
“GS IS 30”. The abundance of the uniquely identified peptides
and proteins was significantly lower than the abundance of all

identified peptides and proteins (see supplemental Fig. S2 for
abundance box plots of those analyses with the most unique
identifications). This indicates that with DIA analyses using
comprehensive spectral libraries (“GS IS 30,” “IS and F all 78,”
“Pulsar GS IS 15,” and “Pulsar MM F Prot 20”) detection of
low abundant proteins was improved.

To evaluate the identification of the 13 spike-in proteins we
examined the number of runs in which the respective protein
was identified (supplemental Table S7). In total, all spike-in
proteins were identified in each analysis. Individual proteins
(three lipases, alpha-synuclein and myoglobin) could not be
identified consistently in each run, except for the DirectDIA

FIG. 4. Peptide (A) and protein (B) overlap between the different
analyses. It is shown how many peptides or proteins were found in all
10 analyses (red) or in a subset (9–2 analyses). Unique identifications
are indicated by ”1” (green). The DIA analyses using libraries “Pulsar
GS IS 15”, “Pulsar MM F Prot 20” and “IS and F all 78” resulted in the
highest number of peptides and proteins that were not identified with
any other analysis.
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analysis, in which all proteins were identified throughout. This
is because the DirectDIA algorithm matches and inspects all
runs simultaneously for the identification of peptides and thus
generally has a higher completeness than the other analyses.
As expected, an abundancy-dependent identification pattern
was observed. Alpha-synuclein was congruently not identified
in the lowest spike-in concentration (0.1 pmol), except with
DirectDIA, “GS IS 30” and DDA. The most heterogeneous
identification pattern was observed for Lipase 2, which was
identified in all 15 runs when using DirectDIA, but not consis-
tently in the other analyses.

In summary, for peptide and protein identification we con-
clude that with spectral-library based analyses more identifi-
cations were achieved than with DDA or DirectDIA, even with
the simplest library

• The larger the spectral library, the more peptide and
protein identifications.

• Using SN Pulsar identifies yields in higher peptide and
protein identification numbers.

• Pooling of samples for spectral library generation is a
good alternative to the measurement of each individual
sample.

Peptide and Protein Quantification

The focus of this work was to compare quantification per-
formance among the different analyses described in 3.2 and
3.3 in terms of reproducibility, specificity and accuracy.

Reproducibility—First, we evaluated the reproducibility be-
tween replicates based on global coefficient of variation (CV)
on peptide and protein group level (see Fig. 5 and supple-
mental Table S9). For the calculation of the CVs, the missing
values were not imputed but simply left out. Imputing the
values to 0 yields in much higher CVs and imputing to mean
would lead to lower CVs (data not shown), whereas both
alternatives would not reflect the actual data. In agreement

with prior publications (1, 26) we found DDA showing much
higher median CVs (29% on peptide and 24% on protein level)
compared with DIA which ranged from 6% for DirectDIA to
10% for the “Pulsar GS IS 15” on peptide level, whereas the
CVs on protein level were even lower (between 5 and 9%). In
general, we observed a trend toward increasing CVs with
increasing library size, which might be a result of detecting
more low abundant species that naturally entail a higher var-
iation. This was also true in case of the Pulsar libraries. Both
contained more peptides and proteins than the respective
libraries generated using PD�SN. An exception was the anal-
ysis using the simplest library “MM IS 6” that, although ex-
hibiting the lowest protein CV (7%) among the spectral library-
based analyses, resulted in mediocre peptide CV (8%). The
difference between the PD�SN and Pulsar identification
was particularly evident in case of the “GS IS 15” library,
which resulted in quite low CVs on peptide and protein level
(8 and 7% respectively), whereas the “Pulsar GS IS 15”
analysis showed the highest peptide CV (10%) among the
DIA analyses.

Specificity—Next, we evaluated the quantification data ob-
tained by the different analyses regarding differential abun-
dance detection specificity - i.e. the ability to differentiate
between true positives (TPs, the spike-in proteins) and false
positives (FPs, the mouse matrix). For this, a differential
abundance test consisting of ANOVA with post hoc Tukey
test was applied to the MS1 precursor peak areas for DDA
and the MS2 extracted ion chromatogram peak areas for
DIA data (details see Statistical Analysis). To maintain very
high statistical significance, we filtered for a relatively strict
corrected p value of 0.01. In all analyses spike-in proteins
(TP) and C2C12 background proteins (FP) were found to be
differentially abundant.

Of the 13 spike-in proteins, 9 to 12 were detected as
differentially abundant in DDA or DIA analyses (see Fig. 6 and

FIG. 5. Shown are the global median
peptide and protein group CVs of the
various analyses in percent. Although
the DDA analysis showed the signifi-
cantly highest CV values of 29% for pep-
tides and 24% for protein groups, the
DIA CVs ranged between 6 and 10% on
peptide and 5 and 9% on protein level.
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supplemental Table S10). The maximum of 12 TP detections
was achieved by “DirectDIA,” “MM IS 6,” “GS IS 15,” “MM F
Pep 16, and “Pulsar MM F Prot 20.” It must be considered,
that though we quantified all proteins with each method (see
Peptide and Protein Identification) not all passed the p value
threshold. The differential abundance of the TP proteins was
detected with all analyses, except for the one of the three
lipases, myoglobin and alpha-synuclein (see also supplemen-
tal Table S11). In addition to the 13 TPs, we found spike-in
contaminants to be differentially abundant (see supplemental
Table S10). Because these were present in the samples, they
were not counted as FPs. The lowest number of TP proteins
was found with the “IS and F all 78” analysis that identified
only 9 spike-in proteins as differentially abundant. At the same
time the highest number of TP peptides (163) was detected,
which cover all 13 spike-in proteins. The same was observed
with the other DIA analyses. This indicates that the applied
approach of taking the mean of the top three peptide inten-
sities to infer protein quantities is insufficient.

Moreover, we analyzed the misdetection (FP) of C2C12
mouse proteins as differentially abundant. Surprisingly, with
DDA the lowest number of FP (15 protein groups and 172
peptides) was achieved whereas DirectDIA resulted in the
highest number of FP, both on protein (151) and peptide level
(730, see Fig. 6 and supplemental Table S10). The library-
based DIA analyses detected between 56 (“MM F Pep 16”)
and 121 (“Pulsar GS IS 15”) FP protein groups, whereas the
analyses using the fractionation libraries (“MM F Pep 16” and
“MM F Prot 20”) exhibited the lowest number of FP, both on
protein and peptide level.

To investigate why we found much more FP with DIA than
with DDA we had a closer look at the quantification data. We
found that most FP could be classified into two categories:
group I showed differential abundance trends very similar to
the spike-in proteins (see supplemental Fig. S3 for an exam-
ple). The peptides of these “correlating” proteins most likely
originated from one of the spike-in solutions but the corre-
sponding non-mouse proteins were not included in our data-

FIG. 6. Number of TP (A) and FP (B)
proteins and peptides. The numbers of
proteins and peptides that passed the
ANOVA p value filter of 0.01 (corrected
for multiple testing) are shown for a) the
13 spike-in proteins (TPs) and b) mouse
proteins (FPs). 9 (IS and F all 78) to 12 TP
proteins and 116 (M Pep F 16) to 163 (IS
and F all 78) TP peptides were detected
as differentially abundant. The lowest
number of FP on peptide and protein
level was achieved with the DDA analy-
sis whereas the highest number of dif-
ferentially abundant mouse matrix pro-
teins was detected using DirectDIA.
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base and have shared peptides with (probably homolog)
mouse proteins. Even though we performed the initial check
for spike-in contaminants (see Statistical Analysis), we used
an MS with lower resolution for this than the one used for the
DIA experiment. Therefore, we might have missed some of the
contaminants in the preliminary checks. The second and
larger group (II) encompassed proteins exhibiting a very small
fold-change over the five samples with usually only one sam-
ple exhibiting a slightly higher or lower abundance than the
other four. These “low fold change” protein hits are probably
found to be significantly differentially abundant because of a
lower CV of DIA compared with DDA and statistical effects
emerging from the limited number of replicates. In DDA these
were not found to have a significant differential abundance at
p � 0.01 (data not shown). Both groups were filtered out by A)
a correlation analysis and B) requiring a minimal fold change
of 1.3 (details see Statistical Analysis). After applying both
filters to all analyses (DDA and DIA), the number of FP was
reduced significantly in all DIA analyses, so that they now
exhibited comparable values to DDA (see Table III). On pep-
tide and protein level the lowest FP rates were achieved using
the “GS IS 15” and “GS IS 30” libraries for DIA analyses,
whereas the highest FP rates were observed with “Pulsar MM
F Prot 20” and “MM F Pep 16.” The OpenSWATH analysis
yielded in about the same numbers of TP and FP, both with
the unfiltered and filtered approach. Therefore, a tool induced
bias can be excluded.

To further analyze the specificity of differential abundance
detection, ROC (receiver operator characteristics) curves, dis-
playing the number of TP against the number of FP of a
q-value sorted list, together with the respective AUC (area
under the curve) were calculated (see Table IV). The higher the
AUC the better the specificity of the analysis, which means
that the TP are detected with higher significance than the FP.
We found specificities with AUCs ranging from 0.61 to 0.92 on
peptide level and from 0.8. to 0.97 on protein level (where an
AUC of 1.0 is the theoretically best specificity). The best
specificities on protein level were achieved in DIA analyses
using libraries with a high similarity to the actual samples: the

“MM IS 6” (AUC: 0.97) and the “GS IS 15” (AUC: 0.95, see
supplemental Fig. S4 for exemplary ROC curves) whereas
“Pulsar MM F Prot 20” and “IS and F all 78” achieved almost
equally good results (AUCs 0.94 and 0.93 respectively). DDA
showed a medium specificity compared with all other analy-
ses on protein level, whereas DIA with “MM F Pep 16” had the
overall lowest specificity. “Pulsar MM F Prot 20” showed a
very high specificity on protein level (AUC: 0.94), but not on
peptide level (AUC: 0.63).

Accuracy—Because the amount of spiked-in protein was
known for every sample and each of the 13 spike-in proteins,
the theoretical FCs can be compared with the relative quan-
tification results of the DDA and DIA data analyses (see box
plots in Fig. 7 and supplementary accuracy plots). The accu-
racy of differential abundance detection was assessed based
on the mean absolute percentage error (MAPE, see 2.2.4). The
MAPE varied greatly among the different analyses (see Table
IV). DDA, although able to detect 74% of all possible differ-
ential states showed the highest deviation from the actual
abundance ratios of spike-in proteins based on the MAPE
(see Fig. 7A � 7C). The median FCs were more accurate with
higher spike-in amounts, but higher deviations were observed
with low spike-in amounts, especially for 0.1 pmol. For exam-
ple, the fold-change of 10 was hit more accurate, when the
spike-in amounts 10 pmol and 1 pmol were compared,
whereas the ratios of 1 pmol to 0.1 pmol and 5 pmol to 0.5
pmol were less accurate. This trend was not observed in the
DIA approach, indicating a higher accuracy and linear range -
at least in the concentration range discussed here. The MAPE
of all DIA analyses was much lower for all ratios and amounts,
both on peptide and protein level, compared with DDA. The
lowest deviation from the actual abundance ratios on peptide
and protein level was observed with the Pulsar libraries (see
Fig. 7B � 7D and Table IV) whereas “MM F Pep 16” and “IS
and F all 78” exhibited the highest MAPE on protein level

TABLE III
False positive rate. Number of FP and resulting FP rate after correla-

tion and low-fold change filtering on protein and peptide level

Protein level Peptide level

FP
(filtered) FP rate FP

(filtered) FP rate

DDA 5 20.00% 124 42.61%
DirectDIA 13 28.89% 118 35.22%
MM IS 6 8 25.00% 119 40.61%
GS IS 15 5 14.29% 123 34.36%
GS IS 30 6 16.22% 125 32.81%
MM F Prot 20 14 29.79% 167 43.04%
MM F Pep 16 12 30.77% 129 43.58%
IS and F all 78 14 28.57% 226 42.56%
Pulsar GS IS 15 12 26.67% 188 40.26%
Pulsar MM F Prot 20 14 30.43% 214 43.50%

TABLE IV
AUCs and mean absolute percentage errors. Table showing the AUC
of the ROCs and the mean absolute percentage error (MAPE) of the
respective method on the peptide and protein level. The MAPE was
calculated between the median of achieved and expected protein/
peptide fold changes, on log2 transformed ratios. The values can be
interpreted as deviation between the achieved and expected ratio in

percent

Peptide Protein

AUC MAPE AUC MAPE

DDA 0.61 65.20% 0.88 57.77%
DirectDIA 0.92 16.16% 0.87 21.67%
MM IS 6 0.85 18.45% 0.97 23.15%
GS IS 15 0.92 13.99% 0.95 22.84%
GS IS 30 0.88 17.08% 0.87 25.92%
MM F Prot 20 0.73 16.10% 0.82 21.41%
MM F Pep 16 0.68 15.39% 0.80 27.21%
IS and F all 78 0.63 15.12% 0.93 27.52%
Pulsar GS IS 15 0.76 13.78% 0.88 17.69%
Pulsar MM F Prot 20 0.63 12.91% 0.94 19.53%

Reproducibility, Specificity and Accuracy of DIA Quantification

192 Molecular & Cellular Proteomics 19.1

http://www.mcponline.org/cgi/content/full/RA119.001714/DC1


(supplementary accuracy plots). Besides the Pulsar libraries,
DirectDIA and “MM F Prot 20” exhibited the best accuracies
on protein level. In general, the accuracy on peptide level was
better than on protein level.

In summary these quantification data show

• The larger the spectral library, the higher the CV on
peptide and protein level—

• In DIA small FCs might entail the risk of more FP—
• Quantification performance of DIA is superior to DDA,

especially in terms of reproducibility and accuracy—
• Quantification accuracy is decreased when considering

low protein/peptide amounts in DDA, but not in DIA—
• Quantification on peptide level is preferable because

of better differential abundance detection and higher
accuracy—

Discussion
In this study, we compared the identification and especially

the quantification characteristics of DDA and different DIA

approaches including a spectral library-free DirectDIA analy-
sis and various spectral library-based analyses. Among these,
we used sample-specific libraries of differing complexity. As
we performed the analysis with two independent software
packages—Spectronaut and OpenSWATH—we could con-
firm, that the results were not specific for one tool. Even
though both approaches yielded different numbers, the gen-
eral trends were in the same directions. As our focus was the
impact of different libraries, not the comparison of tools, we
only give the numbers and values generated by the SN anal-
ysis in the following.

For a thorough comparison between the different analysis
approaches we created the gold standard spike-in sample set
(GS) mimicking characteristics of complex biological samples.
The constant background of C2C12 cell lysate was spiked
with physiological levels of 13 non-mouse proteins in varying
ratios. The total spike-in amount was kept constant for all
samples. The combination of the libraries and the GS sample

FIG. 7. Differential spike-in peptide and protein abundance ratios. Detection of differential spike-in peptide (A, B) and protein (C, D)
abundance ratios exemplarily DDA (A, C) and Pulsar GS IS 15 (B, D). Only the ratios passing the FC and correlation filter are plotted. The plots
show the log2 transformed fold change ratios of peptides and protein groups for the spike-in proteins. The data is grouped by the states which
are compared, e.g. for a fold change of 2 the spike-in states 1 pmol and 0.5 pmol and 10 pmol and 5 pmol. Plots for all other analyses can
be found in the supplements (supplementary accuracy plots). It can be observed that the average deviation of the original values with DIA is
smaller than with DDA.
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set allowed a comprehensive in-depth evaluation of quantifi-
cation performance of DIA in terms of reproducibility, speci-
ficity and accuracy.

Several studies already showed that spectral library-based
DIA surpasses shotgun DDA in terms of number of identified
peptides and proteins (1, 53) and has a significantly greater
run-to-run identification overlap (54, 55). Here, we confirmed
both points independent of the library complexity although
especially peptide identification and consistency varied be-
tween the used spectral libraries. Using larger spectral librar-
ies, either by combining many DDA runs (“GS IS 30”) or
different sample preparation strategies (“IS and F all 78”) or by
using a particular search engine (Pulsar), resulted in high
numbers of extractions from DIA data (on average 4700).
Smaller libraries of up to 15 repetitive DDA measurement of
non-fractionated samples (“MM IS 6” or “GS IS 15” libraries)
identified about 3800 protein groups. Sample fractionation for
library creation on peptide or protein level, although enlarging
library size, did not prove to be very beneficial in extracting
DIA data. Fractionation on protein level (using the “MM F Prot
20” library) achieved more identifications than fractionation on
peptide level (“MM F Pep 16”). Govaert et al. also observed
that an increase in identifications from DIA data is not pro-
portional to the increase in library size when sample prefrac-
tionation is used (29). The authors also showed that high-pH
reverse phase peptide fractionation is less effective than SDS-
PAGE protein fractionation in terms of number of identified
peptides and proteins. Nonetheless, this technique is often
applied in clinical studies to increase library depth (e.g. (56,
57)). When looking at the identification of specific proteins -
here the spike-in proteins - a higher identification consistency
over all 15 DIA runs was achieved with libraries generated
from DDA data of non-fractionated samples (especially “Pul-
sar GS IS 15,” “GS IS 30,” and “GS IS 15”). In summary, we
recommend using libraries from repetitive DDA measure-
ments of individual samples or a sample pool for protein
identification. The use of a sample pool is of advantage es-
pecially if only small sample amounts are available. As Direct-
DIA shows similar identification numbers as DDA, this might
also be an option in case of very limited sample amounts as it
is often the case in clinical studies. To maximize identifica-
tions, complex libraries deriving from different sample prep-
aration strategies should be used.

In quantitative proteome studies a high quantification re-
producibility is of utmost importance. In terms of peptide and
protein quantification, DIA outperforms DDA reproducibility in
this study. A similar superiority of DIA compared with DDA
was already described in other studies (1, 16). Because of the
stochastic nature of data-dependent Top10 acquisition and a
higher interference when using MS1 peak areas for quantifi-
cation, the reproducibility of DDA-based analyses is limited in
general.

In addition, quantification specificity—the ability to clearly
differentiate between regulated and unregulated proteins—

greatly influences the outcome of differential proteome stud-
ies. Our GS data set is especially suited to assess the spec-
ificity of each analysis method based on the number of true
(TP) and false positives (FP) as well as good discrimination of
these as deduced from ROCs. We found, that although
OpenMS analysis of DDA data led to an acceptable high
number of TP peptides and proteins and low number of FP,
the discrimination of both on peptide level was difficult. This
means that when quantification data are sorted by p value the
real candidates would not necessarily be the first on the list;
making manual inspection and subsequent verification indis-
pensable. Even when applying a relatively strict p value cutoff
of 0.01, which was corrected for multiple testing, DIA exhibits
many FP. The application of a FC filter (here we applied 1.3)
drastically reduced the number of FP to 4–19% of the unfil-
tered value. Obviously, the applied correlation filter cannot be
used in real life analyses, as the differentially expressed pro-
teins and their ratios are not known.

Interestingly, in DIA data analysis we found that the used
spectral library also had a great effect on the quantification
specificity although raw data were the same. Altogether, using
small libraries (“MM IS” and “GS IS”) resulted in the best
discrimination between TP and FP both on peptide and pro-
tein level whereas the most complex libraries (“Pulsar MM F
Prot 20” and “IS and F all 78”) led to lower specificity espe-
cially on peptide level. Using sample fractionation or Pulsar for
library creation does not seem beneficial but also not very
disadvantageous. It was also found by Wu et al. (28) that
libraries should not be excessively large to achieve good
quantification specificity.

Quantification accuracy, describing how well the detected
FC matches the theoretical FC, was much higher in all DIA
analyses compared with DDA. Especially when considering
low protein, respectively peptide amounts the DDA accuracy
was affected, independent from the FC itself. Only small
differences in accuracy were observed between the various
DIA analyses ranging from 13–18% on peptide and 18–28%
on protein level (DDA: 65 and 58%, respectively). Here, the
use of Pulsar seemed to be slightly beneficial resulting in the
highest accuracies both with “Pulsar MM F Prot 20” and
“Pulsar GS IS 15.” The most complex library “IS and F all 78”
resulted in the lowest accuracy on protein level, whereas the
smallest library “MM IS 6” exhibited the lowest accuracy on
peptide level. These discrepancies between peptide and pro-
tein level quantifications point toward an insufficient protein
inference. This becomes even more evident when inspecting
the detection of TPs: whereas on protein level not all 13
spike-in proteins could be detected as differentially abundant,
on peptide level all spike-in proteins could be successfully
quantified. This highlights the importance of developing more
accurate methods to infer protein quantities from peptide
intensities.

Altogether, our analyses showed that DIA is superior to
DDA. Using spectral libraries for DIA analysis always in-
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creases identification and quantification depth compared with
DDA. When the aim of a study is only identification the use of
large sample-specific libraries is beneficial, whereas for quan-
tification smaller libraries perform better. The use of Pulsar
seems to be a good compromise for both, identification and
quantification. Nevertheless, its application in Spectronaut is
debatable: the number of identifications and quantifications
are raised substantially compared with other methods, but
Pulsar has no publication of the underlying algorithms yet.
Also, the FDR estimation in Pulsar is a black box in the used
implementation, which makes deeper inspection and analysis
of the correctness impossible. DirectDIA could be a good
option when no libraries can be created, e.g. because of
limited sample availability. In general, we recommend quan-
tification and statistical analyses on peptide level for differen-
tial proteome studies.
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